PE APl documentation

PE API specification

Payment Execution API
documentation

1. Introduction

The Payment Execution (PE) API allows clients to make credit and
debit payments using Treasury accounts in their e-commerce
applications. With this API, you can create deposits (known as
receive orders in Fortris) and payouts (known as send orders) and
receive updates about them through callback services.

The API ensures secure communication and lets you control who
can view and authorize payments. Payments are processed
similarly to those done manually by a Treasury operator.

2. Communications

The PE APl is designed with strong security in four key areas:
1. Authentication and data integrity: Verifies that the data
comes from a trusted source and hasn’t been tampered with.

2. Encryption: Protects your data as it travels over the internet,
by encoding data in a format that is not readable or
understandable without the

3. Replay attack prevention: Stops attackers from repeating a
valid data transmission

4 Trusted connections: Only approved |IP addresses can

access the API.

2.1. Authentication and data integrity
To use the PE API, two unique values are needed:
1. Client Key: This identifies your client and must be included in
all requests
2. Secret: Used to verify the integrity of the data in your

messages and to authenticate you on each request.

Find out more about how to generate the key and secret and how
they should be included on the request

2.2. Encryption

All communications are encrypted using HTTPS to ensure secure
data transfer.

2.3. Replay attack prevention

To prevent replay attacks, each request must include a unigue
number called a nonce. This number must be higher than the one
used in the previous request.

2.4. Trusted connections

You need to whitelist your IP addresses with Customer Support to
use the PE APIL. This makes sure only trusted connections can
access the API.

3. Backward Compatibility

The PE API ensures backward compatibility, meaning old versions
still work even after updates. Here's what it means:

3.1. Stable functionality

Table of Contents

B8

)

B8

)

Qo
ao

These parts of the APl won't change unexpectedly: ~

= existing request parameters
« existing response and callback fields

« required HTTP request headers

3.2. Flexible functionality
These parts of the APl might be updated:

« optional request parameters

« new values for existing parameters o
« optional HTTP request headers (@)
« new fields in APl responses and callbacks 9
= deprecated features might be removed after notice @

the order of fields in responses or callbacks

4. Security

4.1. Key and Secret

You need a key and a secret to use the API. The key identifies you,
and the secret is used to creale a signature for each request.
Include these in your request headers exacily as provided.

an]
The following table shows how each value must be added to the
request header: @
Qo
Header Value .
name @
key key
signature HMAC-SHAS12(un + sha256(payload),
basef4decoded(Secret))
o Keep your key and secret safe and don’t share
them with anyone
4.2. Nonce
Anonce is a unigue value that helps prevent replay attacks. Each m
new request must have a nonce that is greater than the previous
one. ®
Qo
ao

5. Getting started ©

5.1. Get your secret

To start using the PE API, generate a new key and secret by
following these steps:

1. Generate a pair of private and public keys:

openssl genrsa -out privatekey. txt 1024

openssl rsa -in privatekey txt -pubout -out publickey txt

The first command generates the private key @

privatekey.txt. The second command uses 90

the private key to generate the public key

Q publickey.txt. The file named key.txt will @
contain the basef4 encoded secret that
should then be used to generate HMAC

signatures.

2. Send the public key to Cuslome

3. Customer Support will send back your encrypted secret:

{

"key": "<new-client-key=",
"encryptedSecretBaset4Encoded": "=encoded-encrypted-
secret="

}

You'll then decode and decrypt this secret to use it for
generating HMAC signatures.

4. Firstly, decode the secret using:

echo "<encoded-encrypted-secret=" > key bin enc

basef4 --decode -i key bin_enc -o key bin

o If you're using the older baset64 version, use
base64 -d key.bin.enc > key.bin

5. Then, decrypt it using:

openssl rsautl -decrypt -inkey privatekey.txt -in key bin -out
key. txt

5.2. Signature calculation

Each reguest to the PE API needs a valid signature and you must
make sure to validate this signature to ensure data integrity.

A valid signature has this structure:

signature = HMAC-SHAS512(url + sha256(payload),
baset4decoded(Secret))

Follow these steps to generate the signature:

1. Get the URL path of the operation (excluding the hostname).
For example:

http://psp/deposits/create

String url="/deposits/create";

2 Create a SHA-256 hash of the payload:

String payload ="{in" +
"it\"accountld\”: \"00000000-0000-0000-0000-
00000000000V \n" +
"\t\"reference\": \"00000000000000Y" \n" +
"it\"callbackUrl\"- \"http-//localhost 0000A" \n" +
"it\"expiryDate\” \"2020-01-02T03:04 05 1237\" \n" +
"f\"requestedAmountt”: {in" +
"tit\"amount\’: 1.00,\n" +
"Wit\"currencyl”: V"USDY"n" +
"} n" +
"t'nonce\™: 1\n" +

T

String sha256Hex = DigestUtils.sha256Hex(payload);

3 Combine the URL and hash, then apply HMAC-SHA512 using
your secret:

String computedSignature = url + sha256Hex;

ap
oo

Qo
ao

byte|| keyinBytes —

Baseb4 getDecoder().decode(secretBase64Encoded);
String signatureHeader = new
HmacUtils(HmacAlgornthms HMAC_SHA_512,
keyInBytes).hmacHex(computedSignature);

Include this signature in the request headers.

5.2.1. Example
With those values and secret In base64: bXIzZWNyZXQ="

sha256HexOfPayload=99ccff6cf3cebasf57 1b5b6bc6592 156ddad7
€534af9c67635792cfided7db05
urlPlusSha256HexOfPayload=/deposit/create/99ccffécficebasbf57 1
b5b6bc6592156ddad7c534afoc67635792cffded7db05
signature=9cced59ae5987fa669f3fe0efb33df32d 1948580143271
95402090480e449e3faa3290f3711edB6bd5fid053530651826591a
Tal2666809b7203c9ebeaal18

5.2.2, Changes to the signature algorithm for V3

Some endpoints for V3, like "get balances" or "find deposits,” use
query parameters and don’t have a request body. In these cases,
the query string must be included in the signature calculation to
ensure a secure request. Here's the formula for generating a valid
signature when there’s no request body:

signature = HMAC-SHA512(urlWithQueryString,
basef4decoded(Secret))

For example, when calling "find deposits" at the following URL:

https:/ipsphost/v3/deposits?depositlds—b9f1a851-f7f3-4dc8-878b-
cb7ec1810ad7&queryDate=2024-01-01T15:23:48.359Z

The urlWithQueryString would be:

3fdeposits?depositids—b9f1a951-f713-4dc8-878b-
ch7ec1810ad7&queryDate=2024-01-01T15:23-48 3597

o The query string should not be encoded

For GET requests, the signature should be generated only from the
urlWithQueryString . There Is no need to calculate a hash from an
empty request body, as required in the original algorithm.

The order of query parameters for signature verification will always
match the order in which they appear in the HTTP request.
However, if the same query parameter appears multiple times, they
must be grouped together and not split by other parameters. For
example:

= Incorrect: ?parami=a¶m2=b¶m1i=c
« Correct: ?parami=a¶mi=c¶m2=b or ?

param2=b¶m1=a¶mi=c

For POST requesits, the signature algorithm remains the same as
in the old API, as described in the PSP documentation_ If a query
parameter i1s provided, use this formula:

signature = HMAC-SHAS12(urlWithQueryString +
sha256(payload), base64decoded(Secret))

5.3. IP Whitelist

To receive payment updates via callbacks, you need to whitelist
vour IP addresses. You can send a list of IP addresses to

Qo
ao

ap
oo

B8

)

ao
ao

Customer Support

5.4. Setup PSP accounts

Ensure you have at least one valid PE account set up and
activated in Treasury.

6. Deposits

6.1. Deposit state machine

CREATE_FAILED

RECEIVING_FUNDS

COMPLETED l

6.2. Address verification

To enhance security during the deposit process you can use
address verification. Address verification creates a digital signature
of the address payload and sends It back as a part of the
response.

Use the field called verificationSignature to ensure that the address
15 valid and has not been tampered with. You can find the new field
In Appendix B: Callback Samples under 10.B.1 Deposits.

To validate the signature of each address, you need to:

1. Ask Customer Support for your public key to validate the
signatures.

2. Build the signed payload organizationld#walletld#address.

3 Verify the signature using the algorithm SHA512withRSA

Below, you'll find an example of the verification process in Java:

private boolean isSignatureValid(String organizationld,
String walletld,
String address,
String verificationSignature,
String base64Publickey) throws
GeneralSecurityException {

var publickey = convertFromPublicKey(basef4PublicKey),
var payloadBytes = String join("#", organizationld, walletld,
address) getBytes(UTF_8);
var addressSigningAlgorithm =
Signature getinstance("SHAS12withRSA”");
addressSigningAlgorithm.initVerfy(publicKey);
addressSigningAlgorithm.update(payloadBytes);
return
addressSigningAlgorithm.verify(Base64 getDecoder().decode(verifi
cationSignature));

}

private PublicKey convertFromPublicKey(Siring publickey) {
return Try of(() -» {
var asymmetricKeyFactory — KeyFactory.getinstance("RSA”");

var ¥ANGnihlicKev = new

Qo
ao

ap
oo

B8

)

B8

)

P AU L UL Y e

X509EncodedKeySpec(Baset4 decodeBaseb4(publicKey)),
return
asymmetricKeyFactory generatePublic(X509publicKey);
1.get();

7. Payouts

7.1. Payout state machine

CREATE_FAILED

COSIGNER_AUTHORIZATION_PENDING]‘
COSIGNER_AUTHORIZED

AUTHORIZED

APl v2

APV
Replace by Fee

SENT

8. Account balance

The API provides an endpoint to check the balance of a PE

account, available in both fiat and cryptocurrency.

8.

1. Missing exchange rate

If the exchange rate 1sn't available, only the cryptocurrency

balance will be shown.

8.

2. Account balance structure

Account balances are categorized as:

Total balance: All confirmed funds, plus any pending funds that
are incoming or outgoing.

Confirmed funds: All funds that have been confirmed and that
are yours.

Unconfirmed funds: All incoming funds that haven’t been
confirmed yet, minus all outgoing funds that haven’t been
confirmed yet

Available balance: The confirmed funds, minus the
unconfirmed sent funds and the locked balance - these are
funds that you can spend.

Locked funds: Funds that are pending to be broadcast to the
blockchain.

Unconfirmed sent balance: Funds that have been broadcast

ap
ao

Qo
oo

=i

)

B8

)

anda are walung 1o pe contirmeqa In the DIoCKCnailn.

+ Unconfirmed change balance: Funds that are in the process

of being consolidated. These are included in the available
balance, as they can be spent before they are confirmed (as
they come from a Fortris account instead of an external one).

9. Callbacks

Callbacks notify you about updates to your payments. Each

callback includes a:

callback ID: a unique identifier

callback type: the type of event that triggered the callback

Callbacks ensure you receive timely updates and retry if the initial

delivery fails. Validate the signature included with each callback for

data integrity

9.1. Deposit callbacks

Callbacks for deposits are sent when:

a new deposit address is created - DEPOSIT_CREATED

there are issues during deposit creation -
DEPOSIT_CREATION_FAILED

it takes too long to create a deposit -
DEPOSIT_CREATION_TIMEOUT

funds are detected but not confirmed -
DEPOSIT_RECEIVING_FUNDS

a user marks the corresponding receive order in Treasury as
void - DEPOSIT_VOID

the deposit expires in the system without any payment being
made - DEPOSIT_EXPIRED

payments to the address are confirmed -
DEPOSIT_COMPLETED

9.2. Payout callbacks

Callbacks for payouts are sent when:

a new payout is created - PAYOUT_CREATED

there are issues during payout creation -
PAYOUT_CREATION_FAILED

the payout creation times out -
PAYOUT_CREATION_TIMEOUT

the payout requires further authorization -
PAYOUT_REQUIRES_AUTHORIZATIONS

the payout is fully authorized -
PAYOUT_COSIGNER_AUTHORIZED

the transaction signing process has started -
PAYOUT_SIGNING

the transaction broadcasting process has started -
PAYOUT_SENDING

payout is broadcasted to the blockchain - PAYOUT_SENT
payout is confirmed - PAYOUT_COMPLETED

a Treasury user cancels the associated send order -
PAYOUT_CANCELLED

10. Appendices

Qo
ao

ap
oo

B

)

8

)

Appendix A: Code samples

10.A.1. Generate a valid signature for a request

» Example

Appendix B: Callback samples

10.B.1. Deposits

» Deposit created

» Deposit created with an address already used

Fortris usually generates a new receive address
for each new receive order. If you choose to
Q save a receive address and make further

payments to it, Fortris will send a callback of
DEPOSIT_COMPLETED, but with an additional
entry in the body of duplicatedFromDepositld .

» Deposit creation failed

» Deposit creation timeout

» Deposit receiving funds

» Deposit receiving funds - multiple payments

» Deposit void

» Deposit expired

» Deposit completed

10.B.2. Payouts

» Payout created

» Payout creation failed

» Payout creation timeout

» Payout requires authorizations
» Payout cancelled

» Payout cosigner authorized

» Payout signing

» Payout sending

» Payout sent

» Payout completed

Appendix C: Callback samples for V3

The following examples are for V3 of the PE API. All of the
documentation in this guide is relevant for previous versions of the
API, however the examples in Appendix B: Callback samples are
specifically for Bitcoin. The V3 examples in this section are generic
and can be used for any of the cryptocurrencies supported by
Fortris including Bitcoin, Ethereum, Litecoin, Binance, USDT and
usDC.

10 1 Nenncite

Qo
ao

ap
oo

=i

)

B8

)

R e e

» Deposit completed in Bitcoin

» Deposit completed in Ethereum
» Deposit completed in Litecoin
» Deposit completed in USDT

» Deposit completed in USDC

10.C.2. Payouts

» Payout completed in Bitcoin

» Payout completed in Ethereum
» Payout completed in Litecoin
» Payout completed in USDT

» Payout completed in USDC

Appendix D: Platform error codes
The most common errors are described here.
10.D.1. 4XX Client errors

401 Unauthorized

HTTP Platform Error Code Description
Response
Code
401 INVALID_HMAC_SIGNATURE The signature header is
not valid
404 Not found
HTTP Platform Error Code Description
Response
Code
404 NOT_FOUND_ACCOUNT The Account

was not found
in the system

404 NOT_FOUND_XRATE There is no
Exchange Rate
information for
the specified
currencies

404 NOT_FOUND_DEPOSIT The Deposit
was not found
in the system

404 NOT_FOUND_PAYOUT The Payout
was not found
in the system

404 NOT_FOUND_CLIENT_TOKEN Client token not
setup

404 NOT_FOUND_CLIENT The key
provided as
header
identifying the
client was not
found in the
system

8

)

ao
oo

=i

)

B8

)

404

404

409 Conflict

HTTP
Response
Code

409

409

409

409

409

409

409

409

409

NOT_FOUND_ACCOUNT_BALANCE Account
balance not
found for the
requested
accountld

NOT_FOUND_DEBIT_CRDER_CODE = Order code not
found in the
system

Platform Error Code

CONFLICT_INVALID_NONCE

CONFLICT_VALIDATING_MFA_ACCESS_CODE

CONFLICT_EXPIRED_XRATE

CONFLICT_PAYOUT_IN_WRONG_STATE

CONFLICT_PAYOUT_ALREADY_ FULLY_ AUTHORIRIZED

CONFLICT_PAYOUT_CANNOT_AUTHORIRIZE_VIA USER

CONFLICT_USER_ALREADY_ AUTHORIZED

CONFLICT_ACCOUNT_BALANCE_NOT_ENOUGH

CONFLICT_CUSTOM_FEE_RATE_DISABLED

422 Unprocessable entity

Description

The nonce in
the header
was not
valid

The OTP
provided by
the user was
not valid

The current
Exchange
Rate
information
in the
system was
expired

The Payout
was not in
the expected
status

The Payout
was already
fully
authorized

The user
with
usermame
cannot
authorize
the Payout

The user
with
username
already
provided a
valid
authorization

Not enough
available
balance for
the
operation

When a
custom fee
rate is set
but the
functionality
is disabled

B8

)

Qo
ao

ap
oo

B8

)

HTTP
Response
Code

422

422

422

422

422

422

422

Platform Error Code

INVALID_CURRENCY

INVALID_ACCOUNT

INVALID_DEPOSIT_STATE

INVALID_PAYOUT_STATE

INVALID QUERY_DATE

INVALID_CUSTOM_FEE_RATE_TOO_HIGH

INVALID_CUSTOM_FEE_RATE_TOO_LOW

10.D.2. 5XX Server Error

500 Internal server error

HTTP
Response
Code

500

500

Platform Error Code

ERROR_UNKNOWN_CREDIT_ORDER_STATE

ERROR_UNKNOWN_DEBIT_ORDER_STATE

Description

The
currency
specified
and the
currency of
the account
don’t match

The
Account
was not
valid

The Deposit
was in an
invalid state

The Payout
was in an
invalid state

The
queryDate
was not
valid. It
should be in
a range
within the
arrival time
to the
server +- 2
min

When a
requested
custom fee
rate
exceeds the
calculated
maximum

rate

When a
requested
custom fee
rate is lower
than the
minimum
rate allowed

Description

Internal
error
mapping
credit state
to deposit
state

Internal
error

mapping

B8

)

Qo
ao

ap
oo

=i

)

500 ERROR_RETRIEVING_TOKEN_DATA
500 ERROR_CALCULATING_ACCOUNT_BALANCE
502 Bad gateway
HTTP Platform Error Code
Response

Code
502 ERROR_GETTING_CREDIT_ORDER
502 ERROR_INVALID_AUTH_TOKEN_SIGNATURE
502 ERROR_IN_TOKEN_SERVICE

Last updated 2025-07-09 13:55:38 UTC

aepn state
to payout
state

Internal
error
fetching the
token

Internal
error
calculating
account
balance

Description

Internal error
fetching credit
information

Internal error
authentication

Internal error
reading/writing
the token

=i

)

8

(5]

